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Abstract: In this paper we present a tool for modelling and analyzing real-time systems. 

The description of the system being modelled is based on system’s timing characteristics. 

Using the implemented tool, several quantitative timing information about the system 

such as schedulability, response time and loading factor could be estimated. Based on the  

developed simulated model of a real-time system, the timing behavior could be assessed 

prior to implementation.  
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1. INTRODUCTION 
 

A real-time system is generally defined as a system 

in which time is part of the system’s logic. 

Consequently, in a real-time system, the resource are 

managed explicitly to satisfy the completion of real-

time constrains of the application. These constrains, 

such as deadlines, result from natural laws (physical, 

chemical biological, and other) which governs 

application’s behavior and establish acceptable 

execution completion times for associated real-time 

computations. In many cases, real-time applications 

are confused with fast applications; instead of this, 

real-time means predictable and, if possible, 

deterministic computation, and these characteristics 

are independent of the order of magnitude of the time 

constrains imposed to a specific application.  

 

Deterministic computation in real-time context 

means that all computation timing is known in 

advance, and there is no uncertainly about any 

parameters of the computation. These means that all 

elements like: arrival time of tasks, duration of 

execution, resource dependencies that affect system’s 

timing are known in advance. Unfortunately, there 

are very few real-time applications that meet this 

determinism criterion. 

 

The most likely situation is the one when we can 

consider that computation timeliness is not 

deterministic but predictable in the sense that it can 

be estimated with a high level of accuracy 

(acceptably). This implies that several parameters of 

the computation: arrival time, execution duration, 

resource dependencies and interactions with other 

computations are known sufficiently well. This 

knowledge is acquired generally by formal analysis, 

simulations, empirical measurements, etc. The 

resulting values may be expressed in different ways, 

but, for real time systems, the more suitable approach 

is as an upper bound or worst case execution time 

(WCET). 

 

Given the predictability and determinism 

requirements described above, it is of major 

importance to be able to evaluate these characteristics 

for a real-time application. Besides the estimation of 

time, the degree of predictability is affected also by 

the scheduler, whose execution should be also 

controlled. Generally, is a general assumption that, 

real-time scheduling algorithms are deterministic, 

even if the parameters of these algorithms are not.  



Moreover, it is known that both determinism and 

predictability are independent of timeliness 

magnitudes. 
 

 

2. THE MODEL OF REAL-TIME SCHEDULING 
 

In most cases, responsibility of satisfying application 

time constrains is granted to the application software. 

Several approaches are used; the simple one implies 

a static mapping of the application time constrains to 

priorities. But, because traditional real-time 

terminology is not very precise, we can consider that 

many computer systems are real-time to some 

different degree: thus, traditional real-time systems 

are classified into two categories: hard and soft, 

according to the degree for which they satisfy the 

predictability and determinism criteria.  

 

Hard real-time systems are defined as deterministic 

systems, in the sense that it is mandatory that all 

system’s computations must meet their deadlines, 

otherwise the system will fail. On the other side, soft 

real-time systems are not necessary deterministic, in 

the sense that, if in some cases a deadline will be 

missed, that is acceptable.   

 

If, during the designing phase, an analytical 

verification could be done for a real-time system in 

order to prove that the system will function correctly 

in every possible situation (meet all deadlines), then 

we have a fully deterministic real-time system. 

Unfortunately, for many real-time applications such 

analytical verification is not feasible in practice: most 

of hard real-time applications were developed using 

the “best-effort” approach. This approach cannot 

guarantee that all deadlines should be met, but, at 

least, could minimize the probability to which this 

could happen. 

 

In order to be able to estimate the timing properties 

of a real-time system, comprehensive methods for 

expressing time constrains and scheduling criteria 

should be used. In our model, we consider that the 

unit of computation (or computational entity) is the 

task.  

 

Generally, most real-time systems are implemented 

to execute periodically the following: read data from 

sensors process the inputs and respond to the 

controlled system through the actuators. Because 

some (sometimes all) responses to external events 

must be obtained in a pre-determined time (usually 

this time is determined based on the specific 

requirements of the controlled system and its 

interaction with external environment), the tasks that 

implement these jobs are subjected to deadlines. 

 

Consequently, the task is subject to a completion 

time-constraint or deadline: the time period during 

which completion of the real-time execution is 

acceptable. The execution of each real-time task is 

not necessary done to maximize its individual 

temporal acceptability: because a real-time system is 

composed normally by several tasks, each with its 

particular deadline, a collective temporal 

acceptability criterion instead of individual ones 

could be a better approach.  

 

The main goal of the chosen scheduling algorithm is 

to assure that the set of task will meet their deadlines 

globally. A particular set of task is schedulable, if 

there is at least one algorithm which can schedule the 

tasks. That means that, the collective temporal 

accessibility can be sufficiently satisfied. 

 

 

3. FRAMEWORK DESCRIPTION 
 
 

3.1. Task specification  

 

The main concept on which the constructed 

framework is based is the task. In this approach, a 

task is an executable program characterized by 

several parameters and constrains. For 

implementation of the above described model, a 

framework was developed in order to simulate the 

execution of several tasks, with specific 

characteristics and using a specific scheduling 

algorithm. The task could be divided based on task 

arrival pattern into two task models: periodic and a-

periodic.  

 

Usually, classical scheduling policies have as a main 

goal only to cope with satisfaction of deadline 

constrains. Our tool allows creating a model of the 

real-time system based on concurrent tasks and 

computes quantitative information about system’s 

model. The resulting output allows the user to check 

the real-time system from the temporal point of view: 

issues like schedulability of tasks can be determined 

based on a-priori information given for each task.  

 

Consequently, for each task i the timing 

characteristics can be modelled using the following 

parameters: 

- task identifier IDi and name (unique) Ni – defines a 

task uniquely 

- task i execution or computing time Ci– the 

execution time of a task can vary within an interval 

[CBi, Cwi] where and are the best respectively the 

worst case execution times for the task i (in most of 

the cases Worst Case Execution Time is denoted by 

WCETi); generally, only the best and the worst 

execution time of each task are known. When 

modeling the timing behavior of tasks, this is a 

natural approach, because exact computation time of 

a task cannot be establish. Consequently, both times 

have to be considered when creating a task behavior 

model, and results must be compared.  

- task deadline Di – deadline is a typical task 

constraint in real-time systems: the time before which 

the task must complete its execution. Usually, the 



deadline of the task is relative, meaning that, from 

the moment when a task i arrives, it should finish 

within Di time units.  

- task period Ti – for periodic tasks, task period Ti is 

considered to be equal to task deadline Di  

- task ready (arrival) time Ri – represents the moment 

of time when the task i is ready for execution. From 

the time being, all tasks are assumed to arrive at the 

moment 0; no arrival pattern is modeled into the 

actual implementation of our framework. This should 

be a development direction for future improvment of 

the framework 

- other tasks constrains, for example precedence 

constrains - generally, in a real-time system, tasks are 

not running independently: several relations exist 

between the implied tasks. One important relation 

between tasks is the precedence relation: task j 

precedes task i, if task i could not be executed until 

task j finishes its execution. Such precedence 

relations are usually represented using precedence 

graphs; in our framework, precedence is 

implemented using a so called precedence list L. For 

a task i, precedence list contains all task that have to 

precede task i. 

 

Consequently, we can characterize a task as a tuple 

of numbers, such as Ti = (Ni, Ri, Di, Ci ). Although 

these initial parameters are given based on system 

knowledge and approximations, the constructed 

model provides a valuable insight into the behaviour 

of the system and system’s dynamics, helping, in 

many cases, to detect inefficiencies. Also, based on 

the results obtained from the model several 

optimisations could be done, and the way on which 

these optimisations affect the design could be then 

tested before the actual implementation.  

 

 

3.2 Scheduling algorithms and schedulability 

analysis 

 

Schedulability analysis can be done by computing the 

response time of every process in the system and 

comparing it to the process deadline. Several 

scheduling algorithms were implemented, and global 

system’s performance could be compared also 

depending on the chosen algorithm. The framework 

permits to select the appropriate scheduling 

algorithm form several implemented possibilities, as 

presented in Table 1. 

 

Table 1: Aperiodic/periodic scheduling algoritms 

Aperiodic Periodic 

Round Robin 

Shortest Job First 

First Come First  

    Served 

Highest Response  

    Ratio Next 

Shortest Remaining  

    Time Next 

Rate Monotonic 

Earliest Deadline First 

Least Slack Time First 

First In First Out 

 

For non-periodic tasks, First-come-first-served is the 

simples scheduling strategy, that does not invoke any 

task constrains. Tasks are executed in the order of 

their arrival. It is a non-preemptive scheduling 

policy, each task being allowed to run to completion. 

 

Round-robin scheduling algorithm represents the 

preemptive version of First-come-first-served 

algorithm. The difference between the two ones is 

that the tasks are set o execute within a fixed time 

slice, after that, it will be forcibly removed from the 

processor and put at the end of the ready queue. The 

task will continue its execution, next time when it 

will be in the top of the queue. 

 

Shortest-job-first is a priority based alternative to the 

First-come-first-served scheduling strategy. The 

criteria in defining task priority is task execution 

time: task with the shortest computation time Ci 

becomes highest priority one. It is a non-preemptive 

scheduling policy. Another algorithm, Shortest-

Remaining -Time-Next defines the priority of task in 

a different way: based on remaining time for task 

execution. 

 

Highest-response-ratio-next tries to overcome some 

of the weaknesses of the Shortest-job-first algorithm, 

by taking into consideration for establishing the 

prioriy of tasks, two criteria: task execution time and 

task waiting time. Consequently, priority Pi for a task 

i being calculated based on the formula presented in 

(1) where Wi representes task i waiting time (the 

amount of time task has been ready but waiting to be 

executed), Ci represents the computation time for 

task I and Pi is the resulting priority for task i): 
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For periodic tasks, First-In-First-Out represents the 

periodic alternative to First Come-First-Served 

algorithm. Rate monotonic scheduling is a 

preemptive scheduling policy, based on fixed 

priorities given by the task period. Rate monotonic 

scheduling is the preferred scheduling algorithm 

when analysis of periodic tasks when deterministic 

behavior is considered. Rate monotonic algorithm is 

based on several initial assumtions, in order to 

simplify analytical schedulability analyzis, such as: 

- tasks are equally important, and periodic 

- task deadline is define by the task period 

For non-periodic tasks, which are often triggered by 

events coming from the external environment and 

have a non-deterministic behavior, schedulability 

analysis implies more complicated procedures.  

 

Erliest-Deadline-First algorithm use a single criterion 

for asigning task priority: task time to deadline. A 

task will be asigned the highest priority if it is the 

nearest to deadline.  

 



Another important issue that can be obtained from 

the model is system’s performance, based on the so 

called limit factor. The average limit factor of the 

system is computed based on information regarding 

how close to deadline the tasks are (this factor is 

computed only when the set of tasks are schedulable) 

when they finish their execution. If many tasks are 

close to their deadlines, then the system is 

characterized by a low limit factor, because adding a 

new task will lead probably, in many cases, to a non-

schedulable system. So, the optimum solution will be 

chosen from all the schedulable solutions, based on 

the highest average limit factor.  

 

Some scheduling algorithms are constructed in the 

idea of maximizing system’s limit factor, some are 

not. For example, Earliest Deadline First or Shortest 

Remaining  Time Next are based on this idea. On the 

other hand, if we choose another scheduling 

algorithm with fixed priorities (for example, rate 

monotonic), then the limit factor (average) for a 

schedulable set of n tasks could be calculated given 

the following formula: 
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Where Ci represents the actual execution time and Di 

is the deadline for the task I and n represents the total 

number of tasks in the task set. The above formula 

gives an average limit factor, and does not maximize 

the individual ones. The problem of choosing the 

right configuration of tasks in order to maximize 

individual limit factors is not simple. In our 

framework, this is carried out as an trial and error 

process, based on simulation results. 

 

 

3.3 Framework implementation 

 

The developed framework permits modeling, 

simulation and schedulability analysis for real-time 

systems, being a modeling and analyzing tool for 

real-time systems that can be described as a set of 

preemptive or non-preemptive tasks, either periodic 

or non-periodic.  The framework was implemented in 

Visual C++. It is divided into two parts: a 

specification part and an analysis part (Figure 1).  

 

In the specification part, user models the analyzed 

real-time system, by given all initial data about the 

set of tasks. The framework provides a graphical user 

interface for specifying system’s (tasks) initial 

characteristics and for simulation of tasks execution.  

 

In the analysis part, the given real-time system is 

analyzed from the schedulability point of view. Also, 

system’s dynamic behavior could be observed and 

several optimizations could be done based on these 

observations. 

 

 

 
Fig. 1.Framework structure 

 

The main features of our framework are the 

following: 

- a graphical user interface for introducing tasks 

parameters, such as: deadline, execution time, 

priority, etc; these parameters are saved in a (text) 

file for each given task, in a specific format 

- several scheduling algorithms are implemented, and 

the user could choose from a list of implemented 

algorithms. These algorithms are grouped into two 

categories: for periodic and non-periodic tasks 

- a simulator, that shows a graphical representation of 

the generated trace of execution for the set of tasks, 

according to the chosen scheduling algorithm. Using 

this simulation, the points when tasks arrive, when 

they are suspended or completed could be easily 

observed. Also, when a tasks miss its deadline (for a 

non-schedulable set of tasks), this situation is marked 

in the simulation view using a red cross. By 

simulation user can validate the dynamic behavior of 

the system and see how tasks are executing according 

to their given parameters and scheduling policy 

- schedulability analysis implies checking if all tasks 

meet their deadlines; a message to the user is 

displayed, that indicates is system is schedulable or 

not. For the time being, it is assumed that all the tasks 

released times are given through the interface, 

together with other tasks parameters. In the future, 

we plan to extend the framework by introducing the 

possibility of creating several arrival patterns for the 

set of tasks, and the framework will analyze 

schedulability for all possible resulting states.  Also, 

the evaluation of limit factor as it was stated in (2) is 

not implemented yet. 

 

Screenshots of the developed framework are 

presented in Figure 2, 3 and 4 respectively.  

 

 

3.4 An example 

 

The framework has been experimented with several 

scenarios. For a given number of tasks, with specific 

characteristics, simulation were done using several 

scheduling policies. For each simulation, 

schedulability analysis indicates if the set of task is  

Scheduling  
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Task 
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Task 

parameters 

Scheduling 

analysis 

Simulator  

execution 

trace 

NO 

  YES 

SPECIFICATION ANALYSIS 



 
Fig. 2. Periodic task set scheduled with rate monotonic algorithm 

 

 
Fig. 3. Periodic task set scheduled with Earliest Deadline First algorithm 

 
schedulable or not; if yes, the average limit factor is 

calculated based on individual ones. 

 

The system analyzed is composed by several tasks, 

as it is presented in Table 2 and Table 3. 

Screenshots of the resulting scheduling for the tasks 

are presented in Figure 2 and 3, for periodic 

algorithms and Figure 4, for aperiodic algorithms. 

The system has been analyzed with two algorithms 

implemented within the framework: rate monotonic 

and shortest remaining time next. In addition to the 

analyzing process, it is possible to select other 

algorithms; also, to create different system’s 

models for that are using worst case and best case 

execution times respectively.  

 

The task characteristics (requirements) are given by 

the framework user and saved into specific files 

(text). Each task is presented as a sequence of 

components, each with a different execution time 

and deadline. Examples of task sets are given in 

Table 2 and Table 3, for periodic and aperiodic 

tasks respectively. 

 

 



 
Fig. 4. Aperiodic tasks scheduled with Shortest Remaning Time next  

 
Table 2: Periodic task requirements 

 

ID Name R C T D L 

1 Proces1 0 10 20 20  

2 Proces2 0 25 50 50  

 

Table 3: Aperiodic task requirements 

 

ID Name R C D L 

3 Proces3 100 35 60  

5 Proces5 20 10 30  

6 Proces6 20 10 50 5,7 

7 Proces7 20 9 50  

8 Proces8 20 10 60  

 

If, for example, the Rate Monotonic scheduling 

algorithm is choosen for the periodic set, by 

computing the response times for all tasks 

presented in Table 2 the results presented in Figure 

2 are generated. From this, we conclude that the 

task set is not schedulable, and points when 

deadline is missed for task proces2 is marked in the 

simulation using a red cross. Information obtained 

from simulation could be used by system’s designer 

further to optimize the system.  

For example, using another scheduling algorithm, 

such as Earliest Deadline First, better results are 

obtained, the task set being schedulable, as it is 

presented in Figure 3. For aperiodic tasks, the task 

set from Table 2 is schedulable, as it is presented in 

Figure 4.  

 

 

CONCLUSIONS 
 

The tool that is presented in this paper could be 

used for modeling an analyzing several real-time 

systems of industrial complexity from the temporal 

properties point of view. By simulating the 

behavior of the tasks, the corectness of the system 

could be evaluated. We proposed a method of 

specifying and verifying timing properties such as 

presented using the above framework. The results 

obtained can be further used in the process of 

implementation, because it gives valuable 

information about system’s behaviour under 

different circumstances. Consequently, the results 

can assist in designing better and more efficient 

real-time systems. The framework should be further 

developed and improved.  
 
 



REFERENCES 
 

Amnell, T. and Fersman, E. and Mokrusin, L. and 

Pettersson, P. and Yi, W. Times (2002) - a tool 

for modeling and implementation of embedded 

systems. Proceeding of TACAS’02, vol. 2280 

of LNCS, pp. 460-464.  

Bate, I. and Burns, A. (1999) A Framework for 

Scheduling in Safety-Critical Embedded 

Control Systems. Proceedings of the 6th 

International Conference on Real-Time 

Computing Systems and Applications, pp.467-

475. 

Campos, S.V.A and Clarke, E. (1999). Analysis and 

Verification of Real-Time Systems Using 

Quantitative Symbolic Algorithms. Journal of 

Software Tools for Technology Transfer, pp. 

260-269 

Kirsch, C. M. (2002). Principles of real-Time 

Programming. EMSOFT 2002, LNCS2491, pp. 

61-75 

Kollár, J., Václavík, P., Porubän, J.: The 

Classification of Programming Environments. 

Acta Universitatis Matthiae Belii, 10, 2003, pp. 

51-64, ISBN 80-8055-662-8  

Korousic-Seljac, B. (1994). Task Scheduling 

Policies for Real Time Systems. 

Microprocessors and Microsystems , vol 18, nr. 

9, pp. 501-511 

Laplante, Ph. A. (2000). Real-Time Systems 

Design and Analysis – An Engineer’s 

Handbook – Second Edition, IEEE Computer 

Society Press. 

Liu, J. (2000). Real-Time Systems. Prentice Hall 

Richard, P. (2002). A Tool for Controlling 

Response Time in Real-Time Systems. TOOLS 

2002, LNCS 2324, pp. 339-348 

Spuri, M. And Stankovic, J. A. (1994). How to 

Integrate Precedence Constrains and Shared 

Resources in real-Time Scheduling. IEEE 

Transactions on Computers, vol 43, no. 12, pp. 

1407-1412. 

Stankovic, J. and Ramamritham, K. (1998). 

Deadline Scheduling for Real-time systems: 

EDF and Related Algorithm., Kluwer 

Academic Publishers.  

Xu, J. (2003). On Inspection and Verification of 

Software with Timing Requirements, IEEE 

Transactions on Software Engineering, vol. 29, 

no. 8. 

 

 

 

 

 


