

A FRAMEWORK FOR MODELING AND EVALUATING TIMING BEHAVIOUR

FOR REAL-TIME SYSTEMS

Zmaranda Doina, Rusu Claudia, Gligor Marius

University of Oradea

5 Armatei Romane street,410087 Oradea, Romania

Email: zdoina@uoradea.ro; clarule79@yahoo.com; glimar78@yahoo.com;

Abstract: In this paper we present a tool for modelling and analyzing real-time systems.

The description of the system being modelled is based on system’s timing characteristics.

Using the implemented tool, several quantitative timing information about the system

such as schedulability, response time and loading factor could be estimated. Based on the

developed simulated model of a real-time system, the timing behavior could be assessed

prior to implementation.

Keywords: Real-time system, deadline, schedulability, Worst Case Execution Time

(WCET).

1. INTRODUCTION

A real-time system is generally defined as a system

in which time is part of the system’s logic.

Consequently, in a real-time system, the resource are

managed explicitly to satisfy the completion of real-

time constrains of the application. These constrains,

such as deadlines, result from natural laws (physical,

chemical biological, and other) which governs

application’s behavior and establish acceptable

execution completion times for associated real-time

computations. In many cases, real-time applications

are confused with fast applications; instead of this,

real-time means predictable and, if possible,

deterministic computation, and these characteristics

are independent of the order of magnitude of the time

constrains imposed to a specific application.

Deterministic computation in real-time context

means that all computation timing is known in

advance, and there is no uncertainly about any

parameters of the computation. These means that all

elements like: arrival time of tasks, duration of

execution, resource dependencies that affect system’s

timing are known in advance. Unfortunately, there

are very few real-time applications that meet this

determinism criterion.

The most likely situation is the one when we can

consider that computation timeliness is not

deterministic but predictable in the sense that it can

be estimated with a high level of accuracy

(acceptably). This implies that several parameters of

the computation: arrival time, execution duration,

resource dependencies and interactions with other

computations are known sufficiently well. This

knowledge is acquired generally by formal analysis,

simulations, empirical measurements, etc. The

resulting values may be expressed in different ways,

but, for real time systems, the more suitable approach

is as an upper bound or worst case execution time

(WCET).

Given the predictability and determinism

requirements described above, it is of major

importance to be able to evaluate these characteristics

for a real-time application. Besides the estimation of

time, the degree of predictability is affected also by

the scheduler, whose execution should be also

controlled. Generally, is a general assumption that,

real-time scheduling algorithms are deterministic,

even if the parameters of these algorithms are not.

Moreover, it is known that both determinism and

predictability are independent of timeliness

magnitudes.

2. THE MODEL OF REAL-TIME SCHEDULING

In most cases, responsibility of satisfying application

time constrains is granted to the application software.

Several approaches are used; the simple one implies

a static mapping of the application time constrains to

priorities. But, because traditional real-time

terminology is not very precise, we can consider that

many computer systems are real-time to some

different degree: thus, traditional real-time systems

are classified into two categories: hard and soft,

according to the degree for which they satisfy the

predictability and determinism criteria.

Hard real-time systems are defined as deterministic

systems, in the sense that it is mandatory that all

system’s computations must meet their deadlines,

otherwise the system will fail. On the other side, soft

real-time systems are not necessary deterministic, in

the sense that, if in some cases a deadline will be

missed, that is acceptable.

If, during the designing phase, an analytical

verification could be done for a real-time system in

order to prove that the system will function correctly

in every possible situation (meet all deadlines), then

we have a fully deterministic real-time system.

Unfortunately, for many real-time applications such

analytical verification is not feasible in practice: most

of hard real-time applications were developed using

the “best-effort” approach. This approach cannot

guarantee that all deadlines should be met, but, at

least, could minimize the probability to which this

could happen.

In order to be able to estimate the timing properties

of a real-time system, comprehensive methods for

expressing time constrains and scheduling criteria

should be used. In our model, we consider that the

unit of computation (or computational entity) is the

task.

Generally, most real-time systems are implemented

to execute periodically the following: read data from

sensors process the inputs and respond to the

controlled system through the actuators. Because

some (sometimes all) responses to external events

must be obtained in a pre-determined time (usually

this time is determined based on the specific

requirements of the controlled system and its

interaction with external environment), the tasks that

implement these jobs are subjected to deadlines.

Consequently, the task is subject to a completion

time-constraint or deadline: the time period during

which completion of the real-time execution is

acceptable. The execution of each real-time task is

not necessary done to maximize its individual

temporal acceptability: because a real-time system is

composed normally by several tasks, each with its

particular deadline, a collective temporal

acceptability criterion instead of individual ones

could be a better approach.

The main goal of the chosen scheduling algorithm is

to assure that the set of task will meet their deadlines

globally. A particular set of task is schedulable, if

there is at least one algorithm which can schedule the

tasks. That means that, the collective temporal

accessibility can be sufficiently satisfied.

3. FRAMEWORK DESCRIPTION

3.1. Task specification

The main concept on which the constructed

framework is based is the task. In this approach, a

task is an executable program characterized by

several parameters and constrains. For

implementation of the above described model, a

framework was developed in order to simulate the

execution of several tasks, with specific

characteristics and using a specific scheduling

algorithm. The task could be divided based on task

arrival pattern into two task models: periodic and a-

periodic.

Usually, classical scheduling policies have as a main

goal only to cope with satisfaction of deadline

constrains. Our tool allows creating a model of the

real-time system based on concurrent tasks and

computes quantitative information about system’s

model. The resulting output allows the user to check

the real-time system from the temporal point of view:

issues like schedulability of tasks can be determined

based on a-priori information given for each task.

Consequently, for each task i the timing

characteristics can be modelled using the following

parameters:

- task identifier IDi and name (unique) Ni – defines a

task uniquely

- task i execution or computing time Ci– the

execution time of a task can vary within an interval

[CBi, Cwi] where and are the best respectively the

worst case execution times for the task i (in most of

the cases Worst Case Execution Time is denoted by

WCETi); generally, only the best and the worst

execution time of each task are known. When

modeling the timing behavior of tasks, this is a

natural approach, because exact computation time of

a task cannot be establish. Consequently, both times

have to be considered when creating a task behavior

model, and results must be compared.

- task deadline Di – deadline is a typical task

constraint in real-time systems: the time before which

the task must complete its execution. Usually, the

deadline of the task is relative, meaning that, from

the moment when a task i arrives, it should finish

within Di time units.

- task period Ti – for periodic tasks, task period Ti is

considered to be equal to task deadline Di

- task ready (arrival) time Ri – represents the moment

of time when the task i is ready for execution. From

the time being, all tasks are assumed to arrive at the

moment 0; no arrival pattern is modeled into the

actual implementation of our framework. This should

be a development direction for future improvment of

the framework

- other tasks constrains, for example precedence

constrains - generally, in a real-time system, tasks are

not running independently: several relations exist

between the implied tasks. One important relation

between tasks is the precedence relation: task j

precedes task i, if task i could not be executed until

task j finishes its execution. Such precedence

relations are usually represented using precedence

graphs; in our framework, precedence is

implemented using a so called precedence list L. For

a task i, precedence list contains all task that have to

precede task i.

Consequently, we can characterize a task as a tuple

of numbers, such as Ti = (Ni, Ri, Di, Ci). Although

these initial parameters are given based on system

knowledge and approximations, the constructed

model provides a valuable insight into the behaviour

of the system and system’s dynamics, helping, in

many cases, to detect inefficiencies. Also, based on

the results obtained from the model several

optimisations could be done, and the way on which

these optimisations affect the design could be then

tested before the actual implementation.

3.2 Scheduling algorithms and schedulability

analysis

Schedulability analysis can be done by computing the

response time of every process in the system and

comparing it to the process deadline. Several

scheduling algorithms were implemented, and global

system’s performance could be compared also

depending on the chosen algorithm. The framework

permits to select the appropriate scheduling

algorithm form several implemented possibilities, as

presented in Table 1.

Table 1: Aperiodic/periodic scheduling algoritms

Aperiodic Periodic

Round Robin

Shortest Job First

First Come First

 Served

Highest Response

 Ratio Next

Shortest Remaining

 Time Next

Rate Monotonic

Earliest Deadline First

Least Slack Time First

First In First Out

For non-periodic tasks, First-come-first-served is the

simples scheduling strategy, that does not invoke any

task constrains. Tasks are executed in the order of

their arrival. It is a non-preemptive scheduling

policy, each task being allowed to run to completion.

Round-robin scheduling algorithm represents the

preemptive version of First-come-first-served

algorithm. The difference between the two ones is

that the tasks are set o execute within a fixed time

slice, after that, it will be forcibly removed from the

processor and put at the end of the ready queue. The

task will continue its execution, next time when it

will be in the top of the queue.

Shortest-job-first is a priority based alternative to the

First-come-first-served scheduling strategy. The

criteria in defining task priority is task execution

time: task with the shortest computation time Ci

becomes highest priority one. It is a non-preemptive

scheduling policy. Another algorithm, Shortest-

Remaining -Time-Next defines the priority of task in

a different way: based on remaining time for task

execution.

Highest-response-ratio-next tries to overcome some

of the weaknesses of the Shortest-job-first algorithm,

by taking into consideration for establishing the

prioriy of tasks, two criteria: task execution time and

task waiting time. Consequently, priority Pi for a task

i being calculated based on the formula presented in

(1) where Wi representes task i waiting time (the

amount of time task has been ready but waiting to be

executed), Ci represents the computation time for

task I and Pi is the resulting priority for task i):

i
C

i
C

i
W

i
P

+

= (1)

For periodic tasks, First-In-First-Out represents the

periodic alternative to First Come-First-Served

algorithm. Rate monotonic scheduling is a

preemptive scheduling policy, based on fixed

priorities given by the task period. Rate monotonic

scheduling is the preferred scheduling algorithm

when analysis of periodic tasks when deterministic

behavior is considered. Rate monotonic algorithm is

based on several initial assumtions, in order to

simplify analytical schedulability analyzis, such as:

- tasks are equally important, and periodic

- task deadline is define by the task period

For non-periodic tasks, which are often triggered by

events coming from the external environment and

have a non-deterministic behavior, schedulability

analysis implies more complicated procedures.

Erliest-Deadline-First algorithm use a single criterion

for asigning task priority: task time to deadline. A

task will be asigned the highest priority if it is the

nearest to deadline.

Another important issue that can be obtained from

the model is system’s performance, based on the so

called limit factor. The average limit factor of the

system is computed based on information regarding

how close to deadline the tasks are (this factor is

computed only when the set of tasks are schedulable)

when they finish their execution. If many tasks are

close to their deadlines, then the system is

characterized by a low limit factor, because adding a

new task will lead probably, in many cases, to a non-

schedulable system. So, the optimum solution will be

chosen from all the schedulable solutions, based on

the highest average limit factor.

Some scheduling algorithms are constructed in the

idea of maximizing system’s limit factor, some are

not. For example, Earliest Deadline First or Shortest

Remaining Time Next are based on this idea. On the

other hand, if we choose another scheduling

algorithm with fixed priorities (for example, rate

monotonic), then the limit factor (average) for a

schedulable set of n tasks could be calculated given

the following formula:

∑
=

−

=

n

1i

ii

n

CD
orlimit_fact (2)

Where Ci represents the actual execution time and Di

is the deadline for the task I and n represents the total

number of tasks in the task set. The above formula

gives an average limit factor, and does not maximize

the individual ones. The problem of choosing the

right configuration of tasks in order to maximize

individual limit factors is not simple. In our

framework, this is carried out as an trial and error

process, based on simulation results.

3.3 Framework implementation

The developed framework permits modeling,

simulation and schedulability analysis for real-time

systems, being a modeling and analyzing tool for

real-time systems that can be described as a set of

preemptive or non-preemptive tasks, either periodic

or non-periodic. The framework was implemented in

Visual C++. It is divided into two parts: a

specification part and an analysis part (Figure 1).

In the specification part, user models the analyzed

real-time system, by given all initial data about the

set of tasks. The framework provides a graphical user

interface for specifying system’s (tasks) initial

characteristics and for simulation of tasks execution.

In the analysis part, the given real-time system is

analyzed from the schedulability point of view. Also,

system’s dynamic behavior could be observed and

several optimizations could be done based on these

observations.

Fig. 1.Framework structure

The main features of our framework are the

following:

- a graphical user interface for introducing tasks

parameters, such as: deadline, execution time,

priority, etc; these parameters are saved in a (text)

file for each given task, in a specific format

- several scheduling algorithms are implemented, and

the user could choose from a list of implemented

algorithms. These algorithms are grouped into two

categories: for periodic and non-periodic tasks

- a simulator, that shows a graphical representation of

the generated trace of execution for the set of tasks,

according to the chosen scheduling algorithm. Using

this simulation, the points when tasks arrive, when

they are suspended or completed could be easily

observed. Also, when a tasks miss its deadline (for a

non-schedulable set of tasks), this situation is marked

in the simulation view using a red cross. By

simulation user can validate the dynamic behavior of

the system and see how tasks are executing according

to their given parameters and scheduling policy

- schedulability analysis implies checking if all tasks

meet their deadlines; a message to the user is

displayed, that indicates is system is schedulable or

not. For the time being, it is assumed that all the tasks

released times are given through the interface,

together with other tasks parameters. In the future,

we plan to extend the framework by introducing the

possibility of creating several arrival patterns for the

set of tasks, and the framework will analyze

schedulability for all possible resulting states. Also,

the evaluation of limit factor as it was stated in (2) is

not implemented yet.

Screenshots of the developed framework are

presented in Figure 2, 3 and 4 respectively.

3.4 An example

The framework has been experimented with several

scenarios. For a given number of tasks, with specific

characteristics, simulation were done using several

scheduling policies. For each simulation,

schedulability analysis indicates if the set of task is

Scheduling

algorithms

Task

files

Task

parameters

Scheduling

analysis

Simulator

execution

trace

NO

 YES

SPECIFICATION ANALYSIS

Fig. 2. Periodic task set scheduled with rate monotonic algorithm

Fig. 3. Periodic task set scheduled with Earliest Deadline First algorithm

schedulable or not; if yes, the average limit factor is

calculated based on individual ones.

The system analyzed is composed by several tasks,

as it is presented in Table 2 and Table 3.

Screenshots of the resulting scheduling for the tasks

are presented in Figure 2 and 3, for periodic

algorithms and Figure 4, for aperiodic algorithms.

The system has been analyzed with two algorithms

implemented within the framework: rate monotonic

and shortest remaining time next. In addition to the

analyzing process, it is possible to select other

algorithms; also, to create different system’s

models for that are using worst case and best case

execution times respectively.

The task characteristics (requirements) are given by

the framework user and saved into specific files

(text). Each task is presented as a sequence of

components, each with a different execution time

and deadline. Examples of task sets are given in

Table 2 and Table 3, for periodic and aperiodic

tasks respectively.

Fig. 4. Aperiodic tasks scheduled with Shortest Remaning Time next

Table 2: Periodic task requirements

ID Name R C T D L

1 Proces1 0 10 20 20

2 Proces2 0 25 50 50

Table 3: Aperiodic task requirements

ID Name R C D L

3 Proces3 100 35 60

5 Proces5 20 10 30

6 Proces6 20 10 50 5,7

7 Proces7 20 9 50

8 Proces8 20 10 60

If, for example, the Rate Monotonic scheduling

algorithm is choosen for the periodic set, by

computing the response times for all tasks

presented in Table 2 the results presented in Figure

2 are generated. From this, we conclude that the

task set is not schedulable, and points when

deadline is missed for task proces2 is marked in the

simulation using a red cross. Information obtained

from simulation could be used by system’s designer

further to optimize the system.

For example, using another scheduling algorithm,

such as Earliest Deadline First, better results are

obtained, the task set being schedulable, as it is

presented in Figure 3. For aperiodic tasks, the task

set from Table 2 is schedulable, as it is presented in

Figure 4.

CONCLUSIONS

The tool that is presented in this paper could be

used for modeling an analyzing several real-time

systems of industrial complexity from the temporal

properties point of view. By simulating the

behavior of the tasks, the corectness of the system

could be evaluated. We proposed a method of

specifying and verifying timing properties such as

presented using the above framework. The results

obtained can be further used in the process of

implementation, because it gives valuable

information about system’s behaviour under

different circumstances. Consequently, the results

can assist in designing better and more efficient

real-time systems. The framework should be further

developed and improved.

REFERENCES

Amnell, T. and Fersman, E. and Mokrusin, L. and

Pettersson, P. and Yi, W. Times (2002) - a tool

for modeling and implementation of embedded

systems. Proceeding of TACAS’02, vol. 2280

of LNCS, pp. 460-464.

Bate, I. and Burns, A. (1999) A Framework for

Scheduling in Safety-Critical Embedded

Control Systems. Proceedings of the 6th

International Conference on Real-Time

Computing Systems and Applications, pp.467-

475.

Campos, S.V.A and Clarke, E. (1999). Analysis and

Verification of Real-Time Systems Using

Quantitative Symbolic Algorithms. Journal of

Software Tools for Technology Transfer, pp.

260-269

Kirsch, C. M. (2002). Principles of real-Time

Programming. EMSOFT 2002, LNCS2491, pp.

61-75

Kollár, J., Václavík, P., Porubän, J.: The

Classification of Programming Environments.

Acta Universitatis Matthiae Belii, 10, 2003, pp.

51-64, ISBN 80-8055-662-8

Korousic-Seljac, B. (1994). Task Scheduling

Policies for Real Time Systems.

Microprocessors and Microsystems , vol 18, nr.

9, pp. 501-511

Laplante, Ph. A. (2000). Real-Time Systems

Design and Analysis – An Engineer’s

Handbook – Second Edition, IEEE Computer

Society Press.

Liu, J. (2000). Real-Time Systems. Prentice Hall

Richard, P. (2002). A Tool for Controlling

Response Time in Real-Time Systems. TOOLS

2002, LNCS 2324, pp. 339-348

Spuri, M. And Stankovic, J. A. (1994). How to

Integrate Precedence Constrains and Shared

Resources in real-Time Scheduling. IEEE

Transactions on Computers, vol 43, no. 12, pp.

1407-1412.

Stankovic, J. and Ramamritham, K. (1998).

Deadline Scheduling for Real-time systems:

EDF and Related Algorithm., Kluwer

Academic Publishers.

Xu, J. (2003). On Inspection and Verification of

Software with Timing Requirements, IEEE

Transactions on Software Engineering, vol. 29,

no. 8.

